6 research outputs found

    Detecting Floating-Point Errors via Atomic Conditions

    Get PDF
    This paper tackles the important, difficult problem of detecting program inputs that trigger large floating-point errors in numerical code. It introduces a novel, principled dynamic analysis that leverages the mathematically rigorously analyzed condition numbers for atomic numerical operations, which we call atomic conditions, to effectively guide the search for large floating-point errors. Compared with existing approaches, our work based on atomic conditions has several distinctive benefits: (1) it does not rely on high-precision implementations to act as approximate oracles, which are difficult to obtain in general and computationally costly; and (2) atomic conditions provide accurate, modular search guidance. These benefits in combination lead to a highly effective approach that detects more significant errors in real-world code (e.g., widely-used numerical library functions) and achieves several orders of speedups over the state-of-the-art, thus making error analysis significantly more practical. We expect the methodology and principles behind our approach to benefit other floating-point program analysis tasks such as debugging, repair and synthesis. To facilitate the reproduction of our work, we have made our implementation, evaluation data and results publicly available on GitHub at https://github.com/FP-Analysis/atomic-condition.ISSN:2475-142

    Optimization of Flavourzyme Hydrolysis Condition for the Preparation of Antioxidant Peptides from Duck Meat using Response Surface Methodology

    No full text
    The aim of this study was to optimize and characterize Flavourzyme hydrolysis conditions for the preparation of antioxidant peptides from duck meat, using response surface methodology. The results indicated that optimal Flavourzyme hydrolysis conditions for preparation of antioxidant peptides from duck protein were a temperature of 50.19°C, pH 5.45, and a reaction time of 1.03 h. Compared to non-hydrolyzed duck meat, Flavourzyme hydrolysis significantly improved the hydroxyl-radical scavenging, DPPH radical-scavenging, ferrous ion-chelating, reducing, and ABTS radical cation-scavenging activities of duck meat. Therefore, Flavourzyme can be regarded as an effective hydrolytic enzyme for the preparation of antioxidant peptides from duck meat
    corecore